Search This Blog

Wednesday, November 23, 2011

LATEST INVENTIONS

                                                              1.  Lithium Batteries Lithium batteries have a lithium anode. They are available as both primary batteries and secondary batteries. Search by Specification | Learn More about Lithium Batteries
Voltage:
Less than 3 volts
3 to 4 volts
4 to 6 volts
6 to 10 volts
10 volts and up
Capacity, Amp Hours (AH):
At least 0.5 ampere-hr
At least 1 ampere-hr
At least 2 ampere-hr
At least 4 ampere-hr
Lithium Primary Batteries:
Lithium / Thionyl Chloride
Lithium / Manganese Dioxide

This article is about disposable primary batteries. For rechargeable batteries, see Lithium-ion battery. CR2032 lithium button cell battery

Lithium 9 volt, AA, & AAA sizes
Lithium batteries are disposable (primary) batteries that have lithium metal or lithium compounds as an anode. Depending on the design and chemical compounds used, lithium cells can produce voltages from 1.5 V to about 3.7 V, over twice the voltage of an ordinary zinc–carbon battery or alkaline battery.[1] Lithium batteries are widely used in products such as portable consumer electronic devices.

Lithium primary batteries account for 28% of all primary battery sales in Japan but only 1% of all battery sales in Switzerland. In the UK and EU only 0.5% of all battery sales including secondary types are lithium primaries.

DESCRIPTION
The term "lithium battery" refers to a family of different chemistries, comprising many types of cathodes and electrolytes.
The most common type of lithium cell used in consumer applications uses metallic lithium as anode and manganese dioxide as cathode, with a salt of lithium dissolved in an organic solvent.
 Disassembled CR2032 battery From left — negative cup from inner side with layer of lithium (oxidized in air), separator(porous material), cathode (manganese dioxide), metal grid — current collector, metal casing (+)(damaged during opening the cell), on the bottom is plastic sealing ring
Another type of lithium cell having a large energy density is the lithium-thionyl chloride cell. Lithium-thionyl chloride batteries are generally not sold to the consumer market, and find more use in commercial/industrial applications, or are installed into devices where no consumer replacement is performed. In this cell, a liquid mixture of thionyl chloride (SOCl2) and lithium tetrachloroaluminate (LiAlCl4) acts as the electrolyte and cathode respectively. A porous carbon material serves as a cathode current collector which receives electrons from the external circuit. Lithium-thionyl chloride batteries are well suited to extremely low-current applications where long life is necessary, such as wireless alarm systems.

                                                2.  SafeGard Water Based Rust Preventatives 
SafeGard water based rust preventatives prevent rust safely, effectively and economically for both indoor and outdoor storage conditions. These anti corrosion resistant coatings are stable, non-flammable, non-toxic, non-reversible emulsions are easy to apply, quick draining and quick drying. Although they normally dry to a clear or translucent brown film, these rust proofing products may be dyed if so desired. The corrosion resistant barrier coating can achive corrosion protection with varying film hardness from very soft to very hard. This product can be applied by brush, spray or dip coating. SafeGard reduces plant clean up, all you have to do is simply wash everything down with water. If spray equipment is used, run water through it until it is clear.
Stop rust and corrosion before it starts with SafeGard H water based coating. In just one coat, corrosion control is achieved by using a waterborne barrier coating that contains a balanced corrosion inhibitor system. This corrosion prevention product dries to a translucent light brown dry to the touch wax coating. Dyes may be added if color coding your supplier or customers parts is desired. 
This firm corrosion resistant coating will not transfer, abrade or run under normal handling. The floor of your packaging area, storage bins or packages sent to your customers will not be oil stained and messy. SafeGard's active corrosion inhibitor system neutralizes metal corrosion normally attributed to fingerprints from parts handling. This protective coating and its chemical system are compatible with lube oil so they need not need to be removed from internal engine parts before assembly.
This high performance corrosion resistant coating will give your parts over 2000 hours humidity performance and over 336 hours protection in the standard ASTM B-117 salt spray performance cabinet. SafeGard H meets the performance requirements of specification MIL-C-16173D grade II.

SafeGard H is OSHA & EPA friendly because it contains no toxic or harmful materials. This rust prevention coating should be allowed to cure for 1 day before being put into service. To remove the protective coating use a simple alkaline cleaner such as Safegard 11085A. This anti corrosion material can be easily applied by spray, brush, dip coating or roller. Spray equipment should be rinsed out with water at the end of the day. SafeGard H is rust proofing for long-term indoor or medium term outdoor storage. SafeGard H coverage is 650-700 sqft/gallon @ 1.5 mils thickness.


                                                        3.Building Human Organs 
Oganovo is a company based in San Diego, California.
Their latest science invention is a technology (novogen) which allows living tissue cells to be assembled into patterns and complex structures, such as organs.
Organovo has partnered with Invetech. a company based in Australia, to develop a bio-printer.

The device prints (places) human cells in a three-dimensional matrix to construct human tissue.

"
Building human organs cell-by-cell was considered science fiction not that long ago," says Fred Davis of Invetech.

Currently, the bio-printer can grow blood vessels.

It is anticipated that within five years the device will construct arteries and by 2020 sophisticated organs will be built by the device.

 

                                                        4.   Batteries That Operate With Any Liquid 
Chungpin Liao, a professor at the Graduate School of Electro-Optic and Material Science of National Formosa University in Taiwan has invented an organic battery that creates electricity when wet.
The "organic" battery generates a charge within 10 seconds and will last anywhere from two days to a week depending on the liquid. It works with water, beverages or even urine.
Although it will only produce half the strength of traditional batteries, the organic battery has a storage capacity greater than water-powered fuel cells and is very cheap to manufacture.
"Plus it contains no toxic substances and does not pose an environmental hazard" says Chungpin.
Liao received his degree in nuclear engineering from National Tsing Hua University in Hsinchu, Taiwan. He earned his Masters and Ph.D degrees in plasma science and fusion technology from the Massachusetts Institute of Technology in Cambridge, United States.
 


 


 


 

HISTORY OF SCIENCE AND TECHNOLOGY

The history of science and technology (HST) is a field of history which examines how humanity's understanding of the natural world (science) and ability to manipulate it (technology) have changed over the centuries. This academic discipline also studies the cultural, economic, and political impacts of scientific innovation.
Histories of science were originally written by practicing and retired scientists, starting primarily with William Whewell, as a way to communicate the virtues of science to the public. In the early 1930s, after a famous paper given by the Soviet historian Boris Hessen,was focused into looking at the ways in which scientific practices were allied with the needs and motivations of their context. After World War II, extensive resources were put into teaching and researching the discipline, with the hopes that it would help the public better understand both science and technology as they came to play an exceedingly prominent role in the world. In the 1960s, especially in the wake of the work done by Thomas Kuhn, the discipline began to serve a very different function, and began to be used as a way to critically examine the scientific enterprise. At the present time it is often closely aligned with the field of Science studies.

Modern engineering as it is understood today took form during the scientific revolution, though much of the mathematics and science was built on the work of the Greeks, Egyptians, Mesopotamians, Chinese, Indians and Muslims. See the main articles History of science and History of technology for these respective topics.

India
Banaras Hindu University has programs: one in History of science and Technology at the Faculty of Science and one in Historical and Comparative Studies of the Sciences and the Humanities at the Faculty of Humanities.
 

Tuesday, November 22, 2011

SCIENCE UPDATES

1.New Research On Body Parts' Sensitivity to Environmental Changes
ScienceDaily (Nov. 21, 2011) — Research by a team of Michigan State University scientists has shed new light on why some body parts are more sensitive to environmental change than others, work that could someday lead to better ways of treating a variety of diseases, including type 2 diabetes.
2.Evidence Supports Ban On Growth Promotion Use of Antibiotics in Farming
ScienceDaily (Nov. 15, 2011) — In a review study, researchers from Tufts University School of Medicine zero in on the controversial, non-therapeutic use of antibiotics in food animals and fish farming as a cause of antibiotic resistance. They report that the preponderance of evidence argues for stricter regulation of the practice. Stuart Levy, an expert in antibiotic resistance, notes that a guiding tenet of public health, the precautionary principle, requires that steps be taken to avoid harm. 
3.Financial Incentives to Reduce Risky Health Behaviors?
ScienceDaily (Nov. 21, 2011) — Financial incentives work for doctors. Could they work for patients, too? Could they encourage them to change unhealthy behaviors and use preventive health services more? In some cases, yes, according to Dr. Marita Lynagh from the University of Newcastle in Australia, and colleagues. Their work, looking at why financial incentives for patients could be a good thing to change risky health behaviors, indicates that incentives are likely to be particularly effective at altering 'simple' behaviors e.g. take-up of immunizations, primarily among socially disadvantaged groups.
4.Regeneration After a Stroke Requires Intact Communication Channels Between Brain Hemispheres
ScienceDaily (Nov. 21, 2011) — The structure of the corpus callosum, a thick band of nerve fibres that connects the two halves of the brain with each other and in this way enables the rapid exchange of information between the left and right hemispheres, plays an important role in the regaining of motor skills following a stroke. A study currently published in the journal Human Brain Mapping has shown that in stroke patients with particularly severely impaired hand movement, this communication channel between the two brain hemispheres in particular was badly damaged.      

Sunday, September 25, 2011

SCIENCE UPDATES

1.Producing Flexible CIGS Solar Cells With Record Efficiency
ScienceDaily (Sep. 23, 2011) — The technology yielding flexible solar cells with an 18.7% record efficiency developed by scientists at Empa, the Swiss Federal Laboratories for Materials Science and Technology, has now been published in Nature Materials. Key to the breakthrough is the control of the energy band gap grading in the copper indium gallium (di)selenide semiconductor, also known as CIGS, the layer that absorbs light and converts it into electricity. The Empa team achieved this by controlling the vapor flux of elements during different stages of the evaporation process for growing the CIGS layer. 
2. Novel Technique Reveals Both Gene Number and Protein Expression Simultaneously
ScienceDaily (Sep. 23, 2011) — Researchers have discovered a method for simultaneously visualizing gene number and protein expression in individual cells. The fluorescence microscopy technique could permit a detailed analysis of the relationship between gene status and expression of the corresponding protein in cells and tissues, and bring a clearer understanding of cancer and other complex diseases, according to researchers who led the study.
3.  Amazing Electrical Properties in Polymers Discovered
ScienceDaily (Sep. 25, 2011) — Crystals and ceramics pale when compared to a material researchers at Oak Ridge National Laboratory discovered that has 10 times their piezoelectric effect, making it suitable for perhaps hundreds of everyday uses. 
4.Reports of Mental Health Disability Increase in United States
 ScienceDaily (Sep. 23, 2011) — The prevalence of self-reported mental health disabilities increased in the U.S. among non-elderly adults during the last decade, according to a study by Ramin Mojtabai, MD, PhD, of the Johns Hopkins Bloomberg School of Public Health. At the same time, the study found the prevalence of disability attributed to other chronic conditions decreased, while the prevalence of significant mental distress remained unchanged.

WAS EINSTIEN WRONG ABOUT SPEED OF ELECTRICITY

The University of Surrey’s Jim al- Khalili will eat his boxer shorts on television if scientists from CERN prove Albert Einstein wrong, the professor of physics wrote in the London-based Times.


CERN, the European Council for Nuclear Research, this week revealed research that casts doubt on Einstein’s Special Theory of Relativity and its central tenet that nothing exceeds the speed of light, the newspaper reported.

Al-Khalili said it is more likely that there is an error in the data from CERN’s experiment which is said to show that neutrinos, ghostly subatomic particles, have broken the speed of light.

“I would be so excited that the humiliation of eating my shorts in public would be a small price to pay,” al-Khalili wrote in the newspaper. 


To contact the reporter on this story: Sarah Jones in London at sjones35@bloomberg.net

To contact the editor responsible for this story: Andrew Rummer at arummer@bloomberg.net

Saturday, August 20, 2011

SCIENCE UPDATES

1.Growth of Cities Endangers Global Environment, According to New Analysis
The explosive growth of cities worldwide over the next two decades poses significant risks to people and the global environment, according to a meta-analysis published August 19 in PLoS ONE.
2.Virus Uses 'Swiss Army Knife' Protein to Cause Infection 
In an advance in understanding Mother Nature's copy machines, motors, assembly lines and other biological nano-machines, scientists are describing how a multipurpose protein on the tail of a virus bores into bacteria like a drill bit, clears the shavings out of the hole and enlarges the hole.
3.Spoilt Food Soon a Thing of the Past?
Unwanted bacteria, yeasts and moulds can cause major problems for the food industry as well as consumers. Norwegian researchers have developed new methods to identify potential sources of contamination.
4.Four-Year-Olds Know That Being Right Is Not Enough
As they grow, children learn a lot about the world from what other people tell them. Along the way, they have to figure out who is a reliable source of information. A new study, which will be published in an upcoming issue of Psychological Science, a journal of the Association for Psychological Science, finds that when children reach around 4 years, they start noticing whether someone is actually knowledgeable or if they're just getting the answers from someone else.
5. New Treatment Approach for Alzheimer's Disease: Researchers Plan to Use Specialized Cells of the Immune System
A research team at Charité -- Universitätsmedizin Berlin and Universitätsklinik Freiburg has documented how the immune system can counteract the advancement of Alzheimer's disease. In a newly published paper, they showed that certain scavenger cells in the immune system, called macrophages, play a key role in this context. Furthermore, they were able to demonstrate how special cell-signaling proteins, called chemokines, mediate the defense process.
6. Nature Reaches for the High-Hanging Fruit: Tools of Paleontology Shed New Light On Diversity of Natural Plant Chemicals
In the first study of its kind, researchers have used tools of paleontology to gain new insights into the diversity of natural plant chemicals. They have shown that during the evolution of these compounds nature doesn't settle for the 'low-hanging fruit' but favours rarer, harder to synthesise forms, giving pointers that will help in the search for potent new drugs. 

Monday, August 15, 2011

SCIENCE UPDATES

Biologists Confirm Sunflower Domesticated in Eastern North America
 New genetic evidence presented by a team led by Indiana University biology doctoral graduate Benjamin Blackman confirms what is now the eastern United States as the single geographic domestication site of modern sunflowers. Co-authors on the findings published this week in Proceedings of the National Academy of Sciences include Blackman's advisor, IU Distinguished Professor of Biology Loren H. Rieseberg, and four others from Rieseberg's lab, as well as collaborators from Universidad Nacional Autonoma de Mexico and the University of Cincinnati.
Catalyst That Makes Hydrogen Gas Breaks Speed Record
 Looking to nature for their muse, researchers have used a common protein to guide the design of a material that can make energy-storing hydrogen gas. The synthetic material works 10 times faster than the original protein found in water-dwelling microbes, the researchers report in the August 12 issue of the journal Science, clocking in at 100,000 molecules of hydrogen gas every second.
Enzyme Found Disrupting Nerve Cell Communication in Alzheimer's Disease
Alzheimer's disease is characterized by abnormal proteins that stick together in little globs, disrupting cognitive function (thinking, learning, and memory). These sticky proteins are mostly made up of beta-amyloid peptide. A better understanding of these proteins, how they form, and how they affect brain function will no doubt improve the diagnosis and treatment of Alzheimer's disease.
DNA Building Blocks Can Be Made in Space, NASA Evidence Suggests
NASA-funded researchers have evidence that some building blocks of DNA, the molecule that carries the genetic instructions for life, found in meteorites were likely created in space. The research gives support to the theory that a "kit" of ready-made parts created in space and delivered to Earth by meteorite and comet impacts assisted the origin of life.

Tuesday, August 9, 2011

Science Club Inauguration


LIGHTING THE LAMP BY Mr.VIVEK 
                                  DISTRIBUTION OF PRIZES BY CHIEF GUEST
                                  DISTRIBUTION OF PRIZES BY CHIEF GUEST
                                   PRAYER SONG BY THE MEMBERS OF SCIENCE CLUB 
                                    LIGHTING THE LAMP BY THE CHIEF GUEST
                                          LIGHTING THE LAMP BY Mrs.BEENA MATHEW
                                   LIGHTING THE LAMP BY THE SECRETARY
                                        

Monday, August 8, 2011

INAUGURATION REPORT

The inauguration of science club for the academic session 2011-12 was held on wednesday 3.8.2011. The ceremony started with invocation to god almighty.It was followed by welcome address by Mrs.Beena Mathews
I\C science club. She briefed out the activities already conducted by the club and reminded the members to make use of all opertunities given to them during club activities.
The ceremony was inaugurated by Sri PP.Maniyappan,Principal KV Payyanur by lighting the traditional lamp.Principal Sir in his inaugural address mentioned about the importance of science club.He specified that each science club memeber should "think beyond limit" and bring out innovative ideas. He appriciated the efforts taken up by science club members and suggested that club activities should be arranged beyond the school campus also.He assured  financial assistance for these activities with in permissible limit.
Then the chief guest distributed prizes for poster making competition held on 27 July. The winners among juniors (VI-VIII.)were 1st.   Swetha(VIII-A)
                                   2nd  Anjana.A(VII-B)
                                   3rd  Anjana Rajan(VII-B)
Seniors(IX-XII)were   1st    Roshni(XI-B)
                                   2nd  Arjun NV(X-A)
                                   3rd Amrutha(XII-A)
Finally Master Gaurav X-B secretary science club expressed vote of thanks.After the programme refreshments were distributed to the club members and various teachers.

Thursday, August 4, 2011

SCIENCE UPDATES

1.Revolutionary Biodegradable Pellet Targets Glue Ear Infection
 A revolutionary biodegradable pellet which slowly releases antibiotics into the middle ear could transform the lives of thousands of children who suffer from glue ear. 
2.Lattice of Magnetic Vortices: Researchers Find Magnetic Skyrmions in Atomically Thin Metal Film 
Physicists at Hamburg and Kiel University and the Forschungszentrum Jülich have found for the first time a regular lattice of magnetic skyrmions – cycloidal vortex spin structures of exceptional stability – on a surface. This fascinating magnetic structure was discovered experimentally at the University of Hamburg by spin-polarized scanning tunnelling microscopy and imaged on the atomic scale. 
3. First True View of Global Erosion
Every mountain and hill shall be made low, declared the ancient prophet Isaiah. In other words: erosion happens. But for the modern geologist a vexing question remains: how fast does this erosion happen? 
 4.Watermark Ink' Device Identifies Unknown Liquids Instantly
Materials scientists and applied physicists collaborating at Harvard's School of Engineering and Applied Sciences (SEAS) have invented a new device that can instantly identify an unknown liquid. 

Tuesday, August 2, 2011

Chandrayaan

                                       Chandrayaan-1Chandrayaan-1 (Sanskrit: चंद्रयान-१, lit: moon vehicle was India's first unmanned lunar probe. It was launched by the Indian Space Research Organisation in October 2008, and operated until August 2009. The mission included a lunar orbiter and an impactor. India launched the spacecraft with a modified version of the PSLV, PSLV C11[2][5] on 22 October 2008 from Satish Dhawan Space Centre, Sriharikota, Nellore District, Andhra Pradesh, about 80 km north of Chennai, at 06:22 IST (00:52 UTC).[6] Former prime minister Atal Bihari Vajpayee announced the project on course in his Independence Day speech on 15 August 2003. The mission was a major boost to India's space program,[7] as India researched and developed its own technology in order to explore the Moon.[8] The vehicle was successfully inserted into lunar orbit on 8 November 2008.[9]
On 14 November 2008, the Moon Impact Probe separated from the Chandrayaan orbiter at 20:06 and struck the south pole in a controlled manner, making India the fourth country to place its flag on the Moon.[10] The probe impacted near Shackleton Crater at 20:31 ejecting underground soil that could be analysed for the presence of lunar water ice.[11]
The estimated cost for the project was Indian Rupee symbol.svg386 crore (US$90 million).[12]
The remote sensing lunar satellite had a mass of 1,380 kilograms (3,042 lb) at launch and 675 kilograms (1,488 lb) in lunar orbit.[13] It carried high resolution remote sensing equipment for visible, near infrared, and soft and hard X-ray frequencies. Over a two-year period, it was intended to survey the lunar surface to produce a complete map of its chemical characteristics and three-dimensional topography. The polar regions are of special interest as they might contain ice.[14] The lunar mission carries five ISRO payloads and six payloads from other space agencies including NASA, ESA, and the Bulgarian Aerospace Agency, which were carried free of cost.[15]
After suffering from several technical issues including failure of the star sensors and poor thermal shielding, Chandrayaan stopped sending radio signals at 1:30 AM IST on 29 August 2009 shortly after which, the ISRO officially declared the mission over. The Main culprit is said to be the failure of onboard DC-DC Converter manufactured by mdipower USA. The converters failed to meet the radiation specifications for the intended mission time. Chandrayaan operated for 312 days as opposed to the intended two years but the mission achieved 95 percent of its planned objectives.[1][16][17][18] Among its many achievements was the discovery of the widespread presence of water molecules in lunar soil.[19]



Objectives

The mission had the following stated scientific objectives:[20]
  • to design, develop, launch and orbit a spacecraft around the Moon using an Indian-made launch-vehicle
  • to conduct scientific experiments using instruments on the spacecraft which would yield data:
    • for the preparation of a three-dimensional atlas (with high spatial and altitude resolution of 5–10 m) of both the near and far sides of the Moon
    • for chemical and mineralogical mapping of the entire lunar surface at high spatial resolution, mapping particularly the chemical elements magnesium, aluminium, silicon, calcium, iron, titanium, radon, uranium, and thorium
    • to increase scientific knowledge
    • to test the impact of a sub-satellite (Moon Impact Probe — MIP) on the surface on the Moon as a fore-runner to future soft-landing missions

Specifications

Mass
1,380 kg at launch, 675 kg at lunar orbit,[21] and 523 kg after releasing the impactor.
Dimensions
Cuboid in shape of approximately 1.5 m
Communications
X band, 0.7 m diameter dual gimballed parabolic antenna for payload data transmission. The Telemetry, Tracking & Command (TTC) communication operates in S band frequency.
Power
The spacecraft is mainly powered by its solar array, which includes one solar panel covering a total area of 2.15 x 1.8 m generating 750 W of peak power, which is stored in a 36 A·h lithium-ion battery for use during eclipses.[22]
Propulsion
The spacecraft uses a bipropellant integrated propulsion system to reach lunar orbit as well as orbit and altitude maintenance while orbiting the Moon. The power plant consists of one 440 N engine and eight 22 N thrusters. Fuel and oxidizer are stored in two tanks of 390 litres each.[21][22]
Navigation and control
The craft is 3-axis stabilized with two star sensors, gyros and four reaction wheels. The craft carries dual redundant bus management units for attitude control, sensor processing, antenna orientation, etc.[21][22]

Specific areas of study

  • High-resolution mineralogical and chemical imaging of the permanently shadowed north- and south-polar regions
  • Searching for surface or sub-surface lunar water-ice, especially at the lunar poles
  • Identification of chemicals in lunar highland rocks
  • Chemical stratigraphy of the lunar crust by remote sensing of the central uplands of large lunar craters, and of the South Pole Aitken Region (SPAR), an expected site of interior material
  • Mapping the height variation of features of the lunar surface
  • Observation of X-ray spectrum greater than 10 keV and stereographic coverage of most of the Moon's surface with 5 m resolution
  • Providing new insights in understanding the Moon's origin and evolution

Payloads

The scientific payload had a total mass of 90 kg and contained five Indian instruments and six foreign instruments.

Indian Payloads

  • TMC or the Terrain Mapping Camera is a CCD camera with 5 m resolution and a 40 km swath in the panchromatic band and was used to produce a high-resolution map of the Moon.[23] The aim of this instrument was to completely map the topography of the Moon. The camera works in the visible region of the electromagnetic spectrum and captures black and white stereo images. When used in conjunction with data from Lunar Laser Ranging Instrument (LLRI), it can help in better understanding of the lunar gravitational field as well. TMC was built by the ISRO's Space Applications Centre (SAC) at Ahmedabad.[24] The TMC was successfully tested on 29 October 2008 through a set of commands issued from ISTRAC.[25]
  • HySI or Hyper Spectral Imager performed mineralogical mapping in the 400-900 nm band with a spectral resolution of 15 nm and a spatial resolution of 80 m.
  • LLRI or Lunar Laser Ranging Instrument determines the height of the surface topography by sending pulses of infrared laser light towards the lunar surface and detecting the reflected portion of that light. It operated continuously and collected 10 measurements per second on both the day and night sides of the Moon.[26] It was successfully tested on 16 November 2008.[26][27]
  • HEX is a High Energy aj/gamma x-ray spectrometer for 30 – 200 keV measurements with ground resolution of 40 km, the HEX measured U, Th, 210Pb, 222Rn degassing, and other radioactive elements.
  • MIP or the Moon Impact Probe developed by the ISRO, is an impact probe which consisted of a C-band Radar altimeter for measurement of altitude of the probe, a video imaging system for acquiring images of the lunar surface and a mass spectrometer for measuring the constituents of the lunar atmosphere.[28] It was ejected at 20:00 hours IST on 14 November 2008. The Moon Impact Probe successfully crash landed at the lunar south pole at 20:31 hours IST on 14 November 2008. It carried with it a picture of the Indian flag. India is now the fourth nation to place a flag on the Moon after the Soviet Union, United States and Japan.

Payload from other countries

  • C1XS or X-ray fluorescence spectrometer covering 1- 10 keV, mapped the abundance of Mg, Al, Si, Ca, Ti, and Fe at the surface with a ground resolution of 25 km, and monitored solar flux.[29] This payload results from collaboration between Rutherford Appleton laboratory, U.K, ESA and ISRO. It was activated on 23 November 2008.[30]

Space flight

Chandrayaan-1 was launched on 22 October 2008 at 6.22 am IST from Satish Dhawan Space Centre using the ISRO's 44.4 metre tall four-stage PSLV launch rocket. Chandrayaan-1 was sent to the Moon in a series of orbit-increasing manoeuvres around the Earth over a period of 21 days as opposed to launching the craft on a direct trajectory to the Moon.[39] At launch the spacecraft was inserted into geostationary transfer orbit (GTO) with an apogee of 22,860 km and a perigee of 255 km. The apogee was increased with a series of five orbit burns conducted over a period of 13 days after launch.[39]
For the duration of the mission, ISRO's telemetry, tracking and command network (ISTRAC) at Peenya in Bangalore, tracked and controlled Chandrayaan-1.[40] Scientists from India, Europe, and the U.S. conducted a high-level review of Chandrayaan-1 on 29 January 2009 after the spacecraft completed its first 100 days in space.[41]

Earth orbit burns

First orbit burn
The first orbit-raising manoeuvre of Chandrayaan-1 spacecraft was performed at 09:00 hrs IST on 23 October 2008 when the spacecraft’s 440 Newton Liquid Engine was fired for about 18 minutes by commanding the spacecraft from Spacecraft Control Centre (SCC) at ISRO Telemetry, Tracking and Command Network (ISTRAC) at Peenya, Bangalore. With this Chandrayaan-1’s apogee was raised to 37,900 km, and its perigee to 305 km. In this orbit, Chandrayaan-1 spacecraft took about 11 hours to go around the Earth once.[42]
Second orbit burn
The second orbit-raising manoeuvre of Chandrayaan-1 spacecraft was carried out on 25 October 2008 at 05:48 IST when the spacecraft’s engine was fired for about 16 minutes, raising its apogee to 74,715 km, and its perigee to 336 km, thus completing 20 percent of its journey. In this orbit, Chandrayaan-1 spacecraft took about twenty-five and a half hours to go round the Earth once. This is the first time an Indian spacecraft has gone beyond the 36,000 km high geostationary orbit and reached an altitude more than twice that height.[43]
Third orbit burn
The third orbit raising manoeuvre was initiated on 26 October 2008 at 07:08 IST when the spacecraft’s engine was fired for about nine and a half minutes. With this its apogee was raised to 164,600 km, and the perigee to 348 km. In this orbit, Chandrayaan-1 took about 73 hours to go around the Earth once.[44]
Fourth orbit burn
The fourth orbit-raising maneuver took place on 29 October 2008 at 07:38 IST when the spacecraft's engine was fired for about three minutes, raising its apogee to 267,000 km and the perigee to 465 km. This extended its orbit to a distance more than half the way to the Moon. In this orbit, the spacecraft took about six days to go around the Earth once.[45]
Final orbit burn
The fifth and final orbit raising manoeuvre was carried out on 4 November 2008 04:56 am IST when the spacecraft’s engine was fired for about two and a half minutes resulting in Chandrayaan-1 entering the Lunar Transfer Trajectory with an apogee of about 380,000 km.[46]

Lunar orbit insertion

Chandrayaan-1 successfully completed the lunar orbit insertion operation on 8 Nov 2008 at 16:51 IST. This manoeuvre involved firing of the liquid engine for 817 seconds (about thirteen and half minutes) when the spacecraft passed within 500 km from the Moon. The satellite was placed in an elliptical orbit that passed over the polar regions of the Moon, with 7502 km aposelene (point farthest away from the Moon) and 504 km periselene (nearest to the Moon). The orbital period was estimated to be around 11 hours. With the successful completion of this operation, India became the fifth nation to put a vehicle in lunar orbit.[9]
First orbit reduction
First Lunar Orbit Reduction Manoeuvre of Chandrayaan-1 was carried out successfully on 9 November 2008 at 20:03 IST. During this, the engine of the spacecraft was fired for about 57 seconds. This reduced the periselene from 504 km to 200 km while aposelene remained unchanged at 7,502 km. In this elliptical orbit, Chandrayaan-1 took about ten and a half hours to circle the Moon once.[47]
Second orbit reduction
This manoeuvre, which resulted in steep decrease in Chandrayaan-1’s aposelene from 7,502 km to 255 km and its periselene from 200 km to 187 km, was carried out on 10 November 2008 at 21:58 IST. During this manoeuvre, the engine was fired for about 866 seconds (about fourteen and half minutes). Chandrayaan-1 took two hours and 16 minutes to go around the Moon once in this orbit.[48]
Third orbit reduction
Third Lunar Orbit Reduction was carried out by firing the on board engine for 31 seconds on 11 November 2008 at 18:30 IST. This reduced the periselene from 187 km to 101 km, while the aposelene remained constant at 255 km. In this orbit Chandrayaan-1 took two hours and 9 minutes to go around the Moon once.[49]
Final orbit
Chandrayaan-1 spacecraft was successfully placed into a mission-specific lunar polar orbit of 100 km above the lunar surface on 12 November 2008.[50][51] In the final orbit reduction manoeuvre, Chandrayaan-1’s aposelene was reduced from 255 km to 100 km while the periselene was reduced from 101 km to 100 km.[51] In this orbit, Chandrayaan-1 takes about two hours to go around the Moon once. Two of the 11 payloads – the Terrain Mapping Camera (TMC) and the Radiation Dose Monitor (RADOM) – have already been successfully switched on. The TMC successfully acquired images of both the Earth and the Moon.[51]

Impact of the MIP on the lunar surface

The Moon Impact Probe (MIP) crash-landed on the lunar surface on 14 November 2008, 15:01 UTC (20:31 Indian Standard Time (IST)) near the crater Shackleton at the south pole.[50] The MIP was one of eleven scientific instruments (payloads) on board Chandrayaan-1.[52]
The MIP separated from Chandrayaan at 100 km from lunar surface and began its nosedive at 14:36 UTC (20:06 IST). going into free fall for thirty minutes.[50] As it fell, it kept sending information back to the mother satellite which, in turn, beamed the information back to Earth. The altimeter then also began recording measurements to prepare for a rover to land on the lunar surface during a second Moon mission - planned for 2012.[10][53][54]
Following the successful deployment of the MIP, the other scientific instruments were turned on, starting the next phase of the mission.[52]
After scientific analyses of the received data from the MIP, the Indian Space Research Organisation confirmed the presence of water in the lunar soil and published the finding in a press conference addressed by its then Chairman Sri. G. Madhavan Nair.

Rise of spacecraft's temperature

ISRO had reported on 25 November 2008 that Chandrayaan-1's temperature had risen above normal to 50 °C,[55] scientists said that it was caused by higher than normal temperatures in lunar orbit.[55] The temperature was brought down by about 10 °C by rotating the spacecraft about 20 degrees and switching off some of the instruments.[55] Subsequently ISRO reported on 27 November 2008 that the spacecraft was operating under normal temperature conditions.[56] In subsequent reports ISRO says, since the spacecraft was still recording higher than normal temperatures, it would be running only one instrument at a time until January 2009 when lunar orbital temperature conditions are said to stabilise.[57] The spacecraft was experiencing high temperature because of radiation from the Sun and infrared radiation reflected by the Moon.[58]

Mapping of minerals

The mineral content on the lunar surface was mapped with the Moon Mineralogy Mapper (M3), a NASA instrument on board the orbiter. The presence of iron was reiterated and changes in rock and mineral composition have been identified. The Oriental Basin region of the Moon was mapped, and it indicates abundance of iron-bearing minerals such as pyroxene.[59]

Mapping of Apollo landing sites

ISRO claims that the landing sites of the Apollo Moon missions have been mapped by the orbiter using multiple payloads. Six of the sites have been mapped including that of Apollo 11, the first mission that brought humans on the Moon.[60]

Images acquisition

The craft completed 3000 orbits acquiring 70000 images of the lunar surface,[61][62][63] which many in ISRO believe is quite a record compared to the lunar flights of other nations. ISRO officials estimated that if more than 40,000 images have been transmitted by Chandrayaan's cameras in 75 days, it worked out to nearly 535 images being sent daily. They were first transmitted to Indian Deep Space Network at Byalalu near Bangalore, from where they were flashed to ISRO's Telemetry Tracking And Command Network (ISTRAC) at Bangalore.
Some of these images have a resolution of up to 5 metres, providing a sharp and clear picture of the Moon's surface, while many images sent by some of the other missions had a 100-metre resolution.[citation needed]
On 26 November, the indigenous Terrain Mapping Camera, which was first activated on 29 October 2008, acquired images of peaks and craters. This came as a surprise to ISRO officials because the Moon consists mostly of craters.[64]

Detection of X-Ray signals

The X-ray signatures of aluminium, magnesium and silicon were picked up by the C1XS X-ray camera. The signals were picked up during a solar flare that caused an X-ray fluorescence phenomenon. The flare that caused the fluorescence was within the lowest C1XS sensitivity range.[65][66][67]

Full Earth image

On 25 March 2009 Chandrayaan beamed back its first images of the Earth in its entirety. These images were taken with the TMC. Previous imaging was done on only one part of the Earth. The new images show Asia, parts of Africa and Australia with India being in the center.[68]

Orbit raised to 200 km due to malfunctions

After the completion of all the major mission objectives, the orbit of Chandrayaan-1 spacecraft, which was at a height of 100 km from the lunar surface since November 2008, had to be raised to 200 km due to malfunctions. The orbit raising manoeuvres were carried out between 09:00 and 10:00 IST on 19 May 2009. The spacecraft in this higher altitude enabled further studies on orbit perturbations, gravitational field variation of the Moon and also enabled imaging lunar surface with a wider swath.[69] However, it was later revealed that the true reason for the orbit change was that it was an attempt to keep the temperature of the probe down.[70] It was "...assumed that the temperature [of the spacecraft subsystems] at 100km above the Moon's surface would be around 75 degrees Celsius. However, it was more than 75 degrees and problems started to surface. We had to raise the orbit to 200km."[71]

Altitude sensing due to Star Sensor failure

The star sensor, a device used for pointing attitude determination of which the mission carried two, failed in orbit after nine months of operation. Afterward, the direction of Chandrayaan was determined using a back-up procedure using a two axis Sun sensor and taking a bearing from a ground station. This was used to update three axis gyroscopes which enabled spacecraft operations, although some failures may have reduced the craft's lifetime.[61][62][63] The second failure, detected on 16 May, was attributed to excessive radiation from the Sun.[72]

Bistatic RADAR experiment with LRO

On 21 August 2009 Chandrayaan-1 along with the Lunar Reconnaissance Orbiter was used to perform a bistatic radar experiment to detect the presence of water ice on the lunar surface. In this experiment, Chandrayaan emanated RADAR pulses which, after reflection from the surface, were picked up by the receivers of both the Chandrayaan and the LRO. Both receivers, Mini-SAR in Chandrayaan and Mini-RF in LRO, were pointed at the Erlanger crater for four minutes during which the observations were made.[73][74][75][76] In March 2010, it was reported that the Mini-Sar experiment onboard the Chandrayaan-1 had discovered cold dark spots which are hypothesized to contain an estimated "at least 600 million metric tonnes" of water-ice held within northern polar craters.[77][78]

End of the mission

The mission was launched in 22 October 2008 and expected to operate for 2 years. However, at 09.02 (UTC) on 29 August 2009 communication with the spacecraft was suddenly lost. The probe had operated for 312 days. The craft will remain in orbit for approximately another 1000 days, eventually crashing into the lunar surface.[79][80]
A member of the science advisory board of Chandrayaan-1 said that it is difficult to ascertain reasons for the loss of contact.[80] ISRO Chairman -Madhavan Nair- said that due to very high radiation, power-supply units controlling both the computer systems on board failed, snapping the communication connectivity.[81] However, information released later showed that the power supply failed due to overheating.[70][71][82]

Completion of primary objectives

Although the mission was less than 10 months in duration, and less than half the intended 2 years in length,[79][81][7] a review by scientists termed the mission successful, as it had completed 95% of its primary objectives, consisting of:
  • To construct the complex spacecraft with 11 scientific instruments.
  • To place the spacecraft in a circular orbit around the Moon by orbit raising manoeuvres from a near Earth orbit.
  • To place the Flag of India on the Moon.
  • To carry out imaging operations and to collect data on the mineral content of the lunar soil.
  • To set up a deep space tracking network and implement the operational procedures for travel into deep space. [83][84]
The data collected from the mission have been disseminated to Indian scientists and also the partners from Europe and U.S.A. for analysis.[61][62][63][7]

Data collected analysis result

Chandrayaan's Moon Mineralogy Mapper has confirmed the magma ocean hypothesis, meaning that the moon was once completely molten. "It proves beyond doubt the magma ocean hypothesis. There is no other way this massive rock type could be formed," said Carle Pieters, science manager at the NASA-supported spectroscopy facility at Brown University in the US.[85]
The Terrain mapping camera Camera on board Chandrayaan-1 , besides producing more than 70,000 three dimensional images, has recorded images of the landing site of US spacecraft Apollo 15, rubbishing conspiracy theories that the US mission to land on the moon four decades back was a hoax.[86][87]
"TMC and HySI payloads of ISRO have covered about 70 per cent of the lunar surface, while M3 covered more than 95 per cent of the same and SIR-2 has provided high-resolution spectral data on the mineralogy of the moon", ISRO said.
Indian Space Research Organisation said interesting data on lunar polar areas was provided by Lunar Laser Ranging Instrument (LLRI) and High Energy X-ray Spectrometer (HEX) of ISRO as well as Miniature Synthetic Aperture Radar (Mini-SAR) of the USA.
LLRI covered both the lunar poles and additional lunar regions of interest, HEX made about 200 orbits over the lunar poles and Mini-SAR provided complete coverage of both North and South Polar Regions of the moon.
Another ESA payload - Chandrayaan-1 imaging X-ray Spectrometer (C1XS) - detected more than two dozen weak solar flares during the mission duration. The Bulgarian payload called Radiation Dose Monitor (RADOM) was activated on the day of the launch itself and worked until the mission's end.
ISRO said scientists from India and participating agencies expressed satisfaction on the excellent performance of Chandrayaan-1 mission as well as the high quality of data sent by the spacecraft.
They have started formulating science plans based on the data sets obtained from the mission. It is expected that in the next few months, interesting results about lunar topography, mineral and chemical contents of the moon and related aspects are expected to be published,ISRO said.[88]
A Chandrayaan-1 moon mission payload has enabled scientists to study the interaction between the solar wind and a planetary body like moon without a magnetic field, a meeting convened by ISRO was told.[89]
In its 10-month orbit around the moon, Chandrayaan-1’s X-ray Spectrometer (C1XS) has detected titanium, confirmed the presence of calcium, and gathered the most accurate measurements yet of magnesium, aluminium and iron on the lunar surface.[90]

Water discovered on the moon

These images show a very young lunar crater on the side of the moon that faces away from Earth, as viewed by NASA's Moon Mineralogy Mappicleshow/5057854.cms ISRO found water on the moon 10 months ago
This was confirmed on 24 September 2009, when Science Magazine reported that Moon Mineralogy Mapper (M3) on Chandrayaan-1 has detected water on the moon.[91] M3 detected absorption features near 2.8-3.0 µm on the surface of the Moon. For silicate bodies, such features are typically attributed to hydroxyl- and/or water-bearing materials. On the Moon, the feature is seen as a widely distributed absorption that appears strongest at cooler high latitudes and at several fresh feldspathic craters. The general lack of correlation of this feature in sunlit M3 data with neutron spectrometer H abundance data suggests that the formation and retention of OH and H2O is an ongoing surficial process. OH/H2O production processes may feed polar cold traps and make the lunar regolith a candidate source of volatiles for human exploration.
The Moon Mineralogy Mapper (M3), an imaging spectrometer, was one of the 11 instruments on board Chandrayaan-I that came to a premature end on 29 August 2009.[92] M3 was aimed at providing the first mineral map of the entire lunar surface.
Lunar scientists have for decades contended with the possibility of water repositories. They are now increasingly “confident that the decades-long debate is over,” a report says. “The moon, in fact, has water in all sorts of places; not just locked up in minerals, but scattered throughout the broken-up surface, and, potentially, in blocks or sheets of ice at depth.” The results from the Chandrayaan mission are also “offering a wide array of watery signals.” [93][94]

How the moon produces its own water

A scientific instrument on Chandrayaan-1 — the Sub keV Atom Reflecting Analyser or SARA — made this discovery that was published in the latest edition of the Planetary and Space Science journal.
According to European Space Agency (ESA) scientists, hydrogen nuclei from solar winds are absorbed by the lunar regolith (a loose collection of irregular dust grains making up the moon’s surface). An interaction between the hydrogen nuclei and oxygen present in the dust grains are expected to produce hydroxyls and water.[citation needed]
SARA, developed by the ESA and the Indian Space Research Organisation, was designed to study the moon’s surface composition and solar wind-surface interactions. Recently, another instrument on the Indian spacecraft, the Moon Mineralogy Mapper — an imaging spectrometer developed by the U.S. National Aeronautics and Space Administration — first found water molecules on the lunar surface.
SARA’s results also highlight a mystery: not every hydrogen nucleus is absorbed. One out of every five rebounds into space, combining to form an atom of hydrogen. “We didn’t expect to see this at all,” said Stas Barabash of the Swedish Institute of Space Physics, who is the European Principal Investigator for SARA.
Hydrogen shoots off at speeds of around 200 km per second and escapes without being deflected by the moon’s weak gravity, the team found.
This knowledge provides timely advice for scientists who are readying ESA’s BepiColombo mission to mercury. The spacecraft will carry two instruments similar to SARA and may find that the innermost planet is reflecting more hydrogen than the moon because the solar wind is more concentrated closer to the sun.[95]

Discovery of caves on the moon

Chandrayaan-1 discovered large caves below the lunar surface - caves that could act as shelters for humans. The tunnel, which has been discovered near the lunar equator, is an empty volcanic tube, measuring about two km in length and 360 metres in width. According to AS Arya, scientist SF of Ahmedabad-based Space Application Centre (SAC), this could be a potential site for human settlement on moon. Earlier, Japanese Lunar orbiter Kaguya (SELENE) had also discovered a cave on moon.[96]

Award for Chandrayaan-1

The American Institute of Aeronautics and Astronautics (AIAA) has selected ISRO's Chandrayaan-1 mission as one of the recipients of its annual AIAA SPACE 2009 awards, which recognizes key contributions to space science and technology.[97]
The International Lunar Exploration Working Group (ILEWG) chose the Chandrayaan-1 team for giving the International Cooperation award, M, Annadurai, project director, Chandrayaan-1.The Chandrayaan team of the Indian Space Research Organisation (ISRO) was chosen for the award for accommodation and tests of the most international lunar payload ever (from 20 countries consisting of India, the European Space Agency representing 17 European countries, NASA and Bulgaria) and the successful launch of the probe on PSLV rocket on 22 October and the lunar insertion of the spacecraft carried out subsequently.[98]

Team

The scientists considered instrumental to the success of the Chandrayaan-1 project are:[99][100][101]
  • G. Madhavan Nair – Chairman, Indian Space Research Organization
  • Dr. T. K. Alex – Director, ISAC (ISRO Satellite Centre)
  • Dr.Mylswamy Annadurai – Project Director, Chandrayan-1
  • S. K. Shivkumar – Director - Telemetry, Tracking and Command Network
  • Mr. M.Pitchaimani – Operations Director, Chandrayan-1
  • Mr. Leo Jackson John – Spacecraft Operations Manager, Chandrayan-1
  • Dr. K. Radhakrishnan (scientist) – Director, VSSC
  • George Koshy – Mission Director, PSLV-C11
  • Srinivasa Hegde – Mission Director, Chandrayaan-1
  • Prof. J N Goswami – Director of Physical Research Laboratory and Principal Scientific Investigator of Chandrayaan-1
  • Rajendra Masanta - Server Operation Lead Specialist - Pool - 19 Space Satellite
  • Anil Prasad - Server Operation Specialist - Pool - 19 Space Satellite

Public release of Data

ISRO has stated recently, that the voluminous data gathered by Chandrayaan-I would be made available to the public by the end of the year 2010. The data would be eventually split into two seasons with the first season going public by the end of 2010 and the second going public by the mid of 2011. The data would contain rare pictures of the moon and also data from the chemical and mineral mapping of the lunar surface.[102]

There is a feature film "Chandrayaan"

Click here to watch